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H-mode edge pedestal and scrape-off layer are a

COUpled SyStem Pedestal SOL
3 &>

Coupling through, e.g.: \
e X-pointion orbit loss b
* nonlocal turbulence dynamics

Goal of XGC gyrokinetic codes is to
include the physics necessary to
model this coupled edge system
(pedestal + SOL)




XGC Family of Codes EPS?\

Edge Physics Simulation

XGC (X-point Gyrokinetic Code) codes are a family of gyro-kinetic,
total-f (= 5D full-f), highly parallelized particle-in-cell (PIC) codes

- Realistic diverted geometry (X-point, separatrix)
- Logical sheath as wall boundary condition
- Self-consistent electric potential calculations

Turbulence? Field Solver Impurities? Neutrals? (ofe] | [T{e]] CPU
operator Hours

XGC1 D(y,0,0) v in XGC1-KAIST Built-in Monte  Fully ~106
¢ Under optimization Carlo neutrals  non-linear
in XGC1-PPPL
XGCa x D (y,0) Under development  built-in Monte  Fully ~104

Carlo neutrals  non-linear

XGCO | D(y) (4 DEGAS?2 Linear ~10%
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OUTLINE

* Neoclassical pressure balance in
scrape-off layer (XGCa)

* Nonlocal intermittent edge turbulence (XGC1)

e Data management (follow on CPPG seminar)




OUTLINE

* Neoclassical pressure balance in
scrape-off layer (XGCa)




Motivation — Neoclassical SOL pressure
balance study

* Three competing requirements in the scrape-off layer
(SOL) for a fusion reactor:

e Sustain adequately high upstream pressure to maximize
fusion reactions in the core

e Keep upstream density much lower than Greenwald density

 Constrain downstream temperature to avoid destroying the
divertor

 Workhorse codes/models for SOL pressure predictions

dominantly assume strong collisionality (A;/L,<<1) with
simplified transport or fluid models



Two-point model (2pm) often used to relate up and
downstream quantities

Upstream:
Ng I, T, Vi)~

e e TV

 2pm based on basic fluid continuity,
momentum conservation [Stangeby
2000]

_____
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0.5 .

e 2pm formatting useful for
characterizing fluid simulation results,
including momentum loss terms for
i.e. neutrals [Kotov PPCF 2009]
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* Experimental evidence for usefulness
on DIII-D in ELMing H-mode, but ‘

unrealistic assumption needed 10

(Vi mia~0, cross-field drift negligible) o~

and Vi, 4i,"Co Ti g~ Te aiv, [Petrie INM .
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Downstream:
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1d constancy of total pressure along field line (x-
direction) derivation

d

%(’nVL’H) = Sp Continuity
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m.nvV: | — : —_ — : m.: Vs otal (e+l

L dx A dx Pe 7 Di Prallep momentum
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minVy | %(Vz‘,ll) +m;i Vi %(nVi,H) = —%(pe +Dpi)  Continuity into
momentum (Sp)
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XGCa simulation parameters of low-collisionality
DIlI-D ELMing H-mode (153820)

[Churchill INME 2016] Value: 1MA 44 24MW 1.3 MW
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[1020 mA‘J ]

[keV]




XGCa total pressure upstream is >twice that
expected by Pe + pi + minVyj = const

 Tested total pressure
constancy (simple +
dynamic) along field line by
normalizing total pressure
between low-field side (LFS)
divertor and midplane by
divertor total pressure 15

D UPStream / target
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J worse in the 214 -12 4 -10 -08 -06 -0.4  -0.2 0,0
near|-|SO-L (th2.5x) X-point s T

i smalier in e .
far-SOL (~1.3x) midplane

The question is why?
What is missing in the simplified
momentum equation?
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Expanded parallel momentum conservation to
include viscosity, neutrals

Total (e+i) conservation of parallel momentum
b-[min;V;-VV; +V(pe+pi)+ V- m|+

m?}‘/'i,”nn (V@'on + Vc:r.) =0

Integrating from divertor (€,=0) to any point x upstream (&, =x)

Usual New terms for near-SOL, need to be

I .
size ~-1

visc T Fneu =1

CGL form for

viscosi’iy!!
1 2 é( L — D )|€||:$_fﬂfdg [(ps| — pi )b,va\
DPtot = Pe + DPi T —mme P 3 Pil| = Piv)lgy=0 — Jo @& [Pi| — PiL
2 ptOt’BHIO
- _ foas dﬁqu,VZ”nn(an -+ ch)
[Churchill NF 2016] neu Drot|e, —0
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lon average kinetic energy (temperature) anisotropy
large in SOL from XGCa simulation

Requires a bi-Maxwellian

approximation to correctly capture Similar anisotropy from
pressure variation XGCO and experiment
[Battaglia PoP 2014]
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CGL approximation

* Assuming no collisions (t;—) removes “randomizing” of
particle velocities; The double adabatic constant assumption

in strong-B field leads to diagonal pressure tensor [Chew,
Goldberger, Low 1956]:

s pr 0 0
P:/d?’v(v—u)(v—u)f: 0 pi O
0 0 p
2
:>b V.= v(pz | sz_) sz_)b Vinb

Landau fluid CGL%y Snyder Hammett- Dor\ad [PoP 1997]:
f=f,,+f,

e |sCGLvalidin the SOL?



CGL viscosity (F,) and neutral momentum drag
(F,.,) non-negligible

Fyise
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Expanded fluid parallel
momentum
conservation still not
satisfied in XGCa

* Viscosity and neutral
effects important, but fail
to account for momentum
loss in near-SOL (~2.0x,
yn=1.004)

 Far-SOL has a better-
balanced balanced parallel
momentum (~0.8 — 1.05)
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Conclusion - Neoclassical SOL pressure
balance study

Simple fluid closure does not give correct parallel pressure
balance contribution

Off-diagonal pressure tensor components may need to be
investigated

Two-point model fails to capture pressure variation in near-
SOL

Kinetic, non-Maxwellian closure is needed if fluid equations
are insisted.

Off-diagonal pressure tensor terms to be calculated from XGC

Work in progress: how to make fluid edge codes (e.g. SOLPS)
agree with kinetic codes



OUTLINE

* Nonlocal intermittent edge turbulence (XGC1)
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Electrostatic, total-f XGC1 simulation of model H-
mode

[ J
N

5

DIII-D like magnetic equilibrium

. Full magnetic geometry, 20 L
including B LT L
X-point s

10 e p [2x10Y M3

* Initialized with model electron == T [keV]

0.5

and ion profiles 7 ... T, [keV]
£8

e Collisions and neutrals turned off w = &/Lu
for physics simplicity, to separate . =~ f/fn
out effects v

e  Most XGC1 simulations are with
collisions neutrals; analysis left
for future
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Frequency spectrum shows dominant turbulence drive
changing through the pedestal/SOL
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. Conditional spectrum S(kgf) suggest dominant
turbulence modes:
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. ITG near pedestal top 10

. TEM through pedestal 7 O

. Kelvin-Helmholtz into SOL E 10

[W. Wang 2015] 20

. Dual propagating mode in pedestal region due to -zo

nonlocal, counter-propagating turbulent 40
0.88 0.90 0.92 0. 94 0.96 0.98 1.00 1.02
structures

[l. Cziegler, PhD thesis, 20 12|
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Non-Gaussian statistics in fluctuations across

pedestal and SOL

e Skewness/kurtosis relation
similar to gamma distribution

throughout pedestal and SOL
[Labit PPCF 2007, Krommes PoP 2008]

[R.M. Churchill, PPCE, submitted]
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Simple picture of blobs and holes

Kosuga, Diamond, NF, 2013

* Local flattening of density

local excess, blob/clump

* Excess (“blobs”) generally
= move outwards

local deficit, hole

e Deficit (“holes”) generally
move inwards

Wall
o/

FIG. 1. Formation and growth of structures. The flattening of the gradient
leads to the formation of blobs (local excess) and holes (local deficit). Once
formed, holes (blobs/clumps) can grow by propagating against (down) the
gradient.
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Plasma Blob

D’Ipolitto, Myra, Zweben, PoP, 2011
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Myra, Zweben, Nucl. Fus, 2013




NSTX blobs in H-mode scattered near-zero
average radial velocity in near-SOL, Iarge poI0|daI

velocity ] HmodeV
P R TR :
. Blobs believed to be as much as 50% E ot
transport across SOL JEAE
[Boedo PoP 2003] g :
. But no proven fundamental understanding of _4"‘“_“;“__‘ s mes n e oo o
generation mechanism!! 4 2 0 2 4 6 8 10 12
(d) radius (cm)
. Blob detection and tracking used to
extract radial and poloidal blob velocities 0
[Davis, Zweben Fus. Eng. Design 2014] ; [ | st H-mode Vpol
W :
. Unlike in L-mode, blobs in near-SOL H- E ok
mode move, on average, dominantly JE b
poloidally = B
[Zweben PPCF 2016] 10 E. |
o -
(f) radius (cm)

[NSTX experiment
Zweben PPCF 2016]
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XGC1 blobs in H-mode scattered near-zero
average radial velocity in near-SOL, large poloidal
velocity Ny v

* Blob detection and tracking used
to extract radial and poloidal

blob velocities -1
[Davis, Zweben Fus. Eng. Design 2014]

V. [km/s]

* V. bounded by +-1km/s, average
near 0 km/s, increases slightly
into SOL, scatter similar to NSTX
H-mode blobs [Zweben NF 2016]
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Blob potential structure not dipolar, against

simple magnetic drift argument
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Conclusion — Nonlocal intermittent
turbulence

* Blobs do not move purely radially from vertically
dipolar electric field in H-mode plasmas:

e Non-1fluid blob motion behavior found

 How the kinetic blob behavior self-organizes to go
along with non-ambipolar ion dynamics is an
important future research direction for divertor heat
load width [chang, submitted NF, 2017]



OUTLINE

e Data management (follow on CPPG seminar)
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Machine learning data management technics,,,,m<’23
large XGC1 data sets PArK.

*  XGC1 distribution function datasets are huge
* ITER simulation 500 GB/time step

. Coherent phase space structure suggested to exist [Dupree Phys Fluids 1982,
Kosuga PoP 2012], other indications they wouldn’t survive [Krommes PoP
1997]

. Unsupervised machine learning algorithm (K-means clustering) helps find
common structure among large data sets

.0

4
3.5F
3
2

o
“
I i [ ; ol
Vv e
: ﬂm/
>
Vi

[R.M. Churchill, IEEE Proc. of NY Sci. Data Sum., 2016]




Summary

. Scrape-off layer pressure variation along magnetic field lines can depart
drastically from simple fluid models in the near-SOL

. CGL parallel viscosity and neutral drag do not solve the problem
. Experimental main ion temperature critical to understand

. Blob potential structure can be monopolar, allow for dominant poloidal ExB
motion of blobs

. How this internal structure self-organizes with non-ambipolar ion orbit
loss may be important for understanding divertor heat flux width

. Unsupervised machine learning reveals no isolated, coherent blob phase space
structure, but rather ring like structure of roughly constant velocity

. Broader data management to be presented as a CPPG seminar



END PRESENTATION
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Turbulence characteristics across the edge
suggestive of nonlocal effects

8 F T T T T l,\\
/

*  Density fluctuations increase in T S
magnitude near separatrix, "ol o]
Lo __osf One/ne ' T
where Vn strongest, stay high in B ; \
:w 4 F / \\_

SOL

03

0.2 |

* Autocorrelation time decreases
in regions of strong negative ExB
shearing 8

0.1}

 BUT, radial and poloidal
correlation lengths are ™
constant over the pedestal+SOL =

(Lpot ™ 4 Liag ™ 5cm)

0.92 0.94 0.96 0.98 1.00 1.02

[R.M. Churchill, PPCF, submitted] YN
e ——
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Maching Learning for finding and exploring structure
in large XGC1 data sets 7’(\3

*  XGC1 distribution function datasets are huge SPQ
* ITER simulation 500 GB/time step

. Coherent phase space structure suggested to exist [Dupree Phys Fluids 1982,

Kosuga PoP 2012], other indications they wouldn’t survive [Krommes PoP ‘
1997]

. Unsupervised machine learning algorithm (K-means clustering) helps find
common structure among large data sets

[R.M. Churchill, IEEE Proc. of NY Sci. Data Sum., 2016]
B
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Non-Gaussian statistics in fluctuations across
pedestal and SOL

e Skewness and kurtosis increase near
separatrix, into the SOL

st Skewness

Skewness

* Slightly negative skewness at pedestal
top suggests existence of density holes

there
[Boedo PoP 2003] - 0.92 0.94 0.96 0.98 1.00 1.02
— Gamma st Excess
kurtosis

Excess kurtosis

0.92 0.94 0.96 0.98 1.00 1.02

YN

[R.M. Churchill, PPCE, submitted]
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Turbulence characteristics across the edge

Correlation lengths are ™
constant over the
pedestal+SOL, suggestive of
dominant non-local
turbulence
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